
A  modified IEEE 13 node test feeder and the IEEE 34 node test feeder are adopted as case study:

▪ Discussion

▪ In the first beginning, the Q value remains the initial value, the agent nearly searches the policy randomly and the leaning 
efficiency is quite low.

▪ The learning process will converge more quickly if the attacker has more resources.

▪ For the IEEE 34 node test feeder, attacking one node only is hard to cause load shedding, so it’s difficult to converge.

▪ In general, more attack resources lead to more serious impact.

▪ When the attacker has few resources, he/she will focus on several specific nodes.

▪ Summary

▪ This work introduces a real-time pricing model that considers the uncertainty of consumers’ demand response behavior 
based on welfare maximization . The operator is assumed to have no knowledge of consumers’ responsive behavior  to 
electricity prices.

▪ A framework is established to analyze the dynamic decision process of the attacker and defender , both of whom have little 
knowledge of the consumers’ behavior mechanism. 

▪ The model-free multi-agent reinforcement learning is proposed to identify the vulnerabilities and find the best defending 
policies under different attack resources. 
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Fig. 5. 11 node test feeder here considered. Fig. 6. IEEE 34 node test feeder.

End user engagement Cyber attacks

Advantages Challenges

• Real-time pricing
• Time-of-use pricing

• False data injection
• Social engineering
• Denial of service

Electricity Prices

Energy Consumption

Smart power grids

➢ The operator sends electricity prices to the 
smart meters in consumers’ houses

➢ The attacker can inject false prices to the 
smart meters

➢ The defender allocates protection resources 
to protect consumers

➢ Consumers respond to the electricity prices
➢ The operator receives consumption 

information and   update real-time prices
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Fig. 1. The two-way communication between the 
utility company and consumers.

False pricing attacks: the attacker injects false prices to the smart meters so that a part of
consumers change their energy consumption behavior, and, thus, potentially cause overload of
some distribution lines.
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The attacker and defender need to find the best policies of allocating their resources to
maximize their benefit .

The decision process of the attacker and defender can be modelled by a two-player zero-sum
Markov Game, 𝑀𝐺 = 𝒮,𝒜,𝒯,ℛ .

⚫ 𝒮 = 𝑠1, 𝑠2, … , 𝑠𝑡 : the finite set of environment states;

𝑠 = ቊ
𝑠1, 𝐿 = 0
𝑠2, 𝐿 > 0

Zero-sum is a situation in game theory in which one person’s gain is equivalent to another’s loss,
so the net change in wealth or benefit is zero.

⚫ 𝒜 = {𝒜𝑎, 𝒜𝑑} represents the joint action of the attacker and defender

◆ 𝒜𝑎 = 𝑎1
𝑎, 𝑎2

𝑎, … , 𝑎𝑛𝑎
𝑎 : attacker’s action space

◆ 𝒜𝑑 = 𝑎1
𝑑 , 𝑎2

𝑑 , … , 𝑎𝑛𝑑
𝑑 : defender’s action space

𝒯 𝑠′ 𝑠, 𝑎𝑎, 𝑎𝑑 ≐ Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡
𝑎 = 𝑎, 𝑎𝑡

𝑑 = 𝑎𝑑)

⚫ 𝒯: the state transition probability function.

At a given state 𝑠 ∈ 𝒮, the probability of the environment change to 𝑠′ ∈ 𝒮 with the joint action

𝑎𝑎, 𝑎𝑑 ∈ 𝒜 can be defined as:

• ℛ = {ℛ𝑎, ℛ𝑑}: the player’s immediate reward function.

• ℛ𝑎 = 𝑟1
𝑎, 𝑟2

𝑎, … , 𝑟𝑡
𝑎 : attacker’s reward

• ℛ𝑑 = 𝑟1
𝑑 , 𝑟2

𝑑 , … , 𝑟𝑡
𝑑 : defender’s rewards
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The Markov game cannot be solved by traditional methods because the consumption behavior of consumers is unknown to the
players, so the reward and transition probability are unavailable.

Temporal-Difference (TD) multi-agent reinforcement learning
--learn directly from raw experience without a model of the environment's dynamics;
--update estimates based in part on other learned estimates

The policy of an agent: Associate different probabilities to each action in 
a state to maximize the return.

𝑄:= 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 +⋯ = 

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1

Discounted reward:

State-value function
--The expected return of the state following the policy 𝜋 is: 

𝑉𝜋 = 𝐸𝜋 

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

𝑄 𝑠, 𝑎𝑎, 𝑎𝑑 = 𝑄 𝑠, 𝑎𝑎, 𝑎𝑑 + 𝛼 ∙ (𝑅′ 𝑠, 𝑎𝑎, 𝑎𝑑 + 𝛾 ∙ 𝑉𝑎𝑙(𝑠′) − 𝑄 𝑠, 𝑎𝑎, 𝑎𝑑 )

𝑉𝑎𝑙(𝑠′) = max
𝜋𝑎

min
𝑎𝑑∈𝒜𝑑



𝑎𝑎∈𝒜𝑎

𝑄(𝑠, 𝑎𝑎, 𝑎𝑑) 𝜋𝑎

𝑄𝜋(𝑠, 𝑎𝑎, 𝑎𝑑) = 𝐸𝜋 

0

𝑘+1

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠 , 𝑎𝑡 = 𝑎𝑎, 𝑎𝑡
𝑑 = 𝑎𝑑

Action-value function

--The expected return of the action 𝑎𝑎 given the action of the 

opponent in state s following the policy 𝜋: 

Minimax-Q learning
--maximize one’s benefit under the worst-case assumption that the 

opponent will always endeavor to minimize it. 

Exploit & explore – 𝜀-greedy

• Explore: the agent randomly choose actions with the probability 𝜀

• Exploit : the agent exploit the learned policy with the probability 1-𝜀

(a) (b)

1

7

1110

689

5 4 32

Fig. 2. Work flow of the real-time pricing with attack and defense.

Fig. 3. The agent-environment interaction in a Markov decision 
process.

Fig. 4. The learning process of players in the proposed two-player zero-
sum Markov game through interaction with environment .

Fig. 7. Result of learned Q value.

a. The 11 node test feeder b. The IEEE 34 node test feeder a. The 11 node test feeder b. The IEEE 34 node test feeder

Fig. 8. The distribution of the  expected energy not supplied (EENS).

Fig. 9. Policy of the attacker.

a. The 11 node test feeder b. The IEEE 34 node test feeder

Fig. 10. Policy of the defender.
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